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Introduction to Regression Analysis

Introduction to Regression Analysis

We described regression earlier as the study of relationships, with the goal of modeling the
relationship between two or more variables, with an eye toward assessing causality.

Regression can also be described as the study of dependence. It is used to answer such
questions as:

1 Do changes in diet result in changes in cholesterol level?
2 Does an increase in the size of classes result in a reduction in learning?
3 Can a runner’s marathon time be predicted from her 5km time?
4 What factors in an insurance company’s database can be used to successfully predict

whether a claim is fradulent?
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Introduction to Regression Analysis

Goals of Regression Analysis

1 The goal of regression is to summarize observed data in a simple, elegant, and useful way.
2 Our simplest examples will involve two variables, one of which is predicted from the other.
3 We’ll now look at a few examples from Chapter 1 of ALR4, using a tool that it absolutely

essential for the analysis of regression data – the scatterplot.
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Some Examples Inheritance of Height

Inheritance of Height

One of the first uses of regression was to study inheritance of traits from generation to
generation.
During the period 1893–1898, E. S. Pearson organized the collection of n = 1375 heights
of mothers in the United Kingdom under the age of 65 and one of their adult daughters
over the age of 18.
Pearson and Lee (1903) published the data, which are in the data file Heights.
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Some Examples Inheritance of Height

Inheritance of Height

The alr4 library must be loaded before we begin. If the alr4 library has been loaded, the
Heights data set is automatically available. However, because R allows you to have many
data files loaded and available at the same time, and because different data files may have
variables with the same name, the system has to be able to avoid “clashes.”

Any of the alr4 data files may be referenced and inspected by name. For example, we can
take a quick look at the first few lines of the Heights data set as follows:

> head(Heights)

mheight dheight

1 59.7 55.1

2 58.2 56.5

3 60.6 56.0

4 60.7 56.8

5 61.8 56.0

6 55.5 57.9
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Some Examples Inheritance of Height

Inheritance of Height

Note that the Heights data file contains two variables, mheight and dheight,
representing the mother’s and daughter’s height for each mother-daughter pair.
Next, we produce a scatterplot showing the height of the daughter (dheight) and the
height of the mother (mheight).
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Some Examples Inheritance of Height

Inheritance of Height

> plot(dheight ~ mheight,data=Heights)
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Some Examples Inheritance of Height

Producing the Scatterplot

Some comments are in order.

The range of heights appears to be about the same for mothers and for daughters.
Because of this, we might be better off drawing the plot so that the lengths of the
horizontal and vertical axes are the same, and the scales are the same. We can force this
by use of the xlim and ylim options.
Some computer programs automate the sizing of the X and Y axes, but others may
require you to do this for yourself. Fortunately, in R it is very easy to experiment.
Notice how I’ve changed the plotting character and the size of the points as well, using
the pch and cex specifications.
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Some Examples Inheritance of Height

Producing the Scatterplot

> plot(dheight ~ mheight,data=Heights,

+ xlim=c(55,75),ylim=c(55,75),pch=20,cex=.3)
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Some Examples Inheritance of Height

Jittering the Scatterplot

Weisberg tells us in the text that the original data as published were rounded to the
nearest inch.
In order to avoid an unfortunate problem with such rounded data, Weisberg displaced the
data randomly in the X and Y directions by using a uniform random number generator
on the range from −0.5 to +0.5, then rounding to a single decimal place.
This type of operation is called jittering the scatterplot.
What problem was he fixing?
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Some Examples Inheritance of Height

Jittering and Un-jittering

We can round the data back to the nearest inch by using the round function in R. This
will give us an idea of what we would see if we did not jitter the plot.
Let’s do that, then plot the rounded variables, and see what the new scatterplot looks
like. Code is shown below.
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Some Examples Inheritance of Height

Jittering and Un-jittering

> X<-round(Heights$mheight)

> Y<-round(Heights$dheight)

> plot(X,Y,xlim=c(55,75),ylim=c(55,75),pch=20,cex=.3)
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Some Examples Inheritance of Height

Jittering and Un-jittering

R has a built-in jitter function
Let’s try it with our rounded data.
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Some Examples Inheritance of Height

Jittering and Un-jittering

> X.jittered <- jitter(X,amount=.5)

> Y.jittered <- jitter(Y,amount=.5)

> plot(X.jittered,Y.jittered,xlim=c(55,75),ylim=c(55,75),pch=20,cex=.3)
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Some Examples Inheritance of Height

Examining the Scatterplot

We examine the scatterplot to see if there is an identifiable dependency.
If X and Y were independent, then the conditional distribution of Y for a given value of
X would not change.
This is clearly not the case here since as we move across the scatterplot from left to right,
the scatter of points is different for each value of the predictor.
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Some Examples Inheritance of Height

Examining the Scatterplot
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Some Examples Inheritance of Height

Examining the Scatterplot

We can see this even more clearly in Weisberg’s figure 1.2, in which we show only points
corresponding to mother-daughter pairs with mheight rounding to either 58,64, or 68 inches.

We establish a selection condition with the code below.

> sel <- (57.5 < Heights$mheight) & (Heights$mheight <= 58.5) |

+ (62.5 < Heights$mheight) & (Heights$mheight <= 63.5) |

+ (67.5 < Heights$mheight) & (Heights$mheight <= 68.5)
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Some Examples Inheritance of Height

Examining the Scatterplot
Then we plot the figure.

> plot(Heights$mheight[sel],Heights$dheight[sel],xlim=c(55,75),ylim=c(55,75),pch=20,cex=.5,

+ xlab="mheight",ylab="dheight")
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Some Examples Inheritance of Height

Examining the Scatterplot

We see that within each of these three strips or slices

The mean of dheight is increasing from left to right, and
The vertical variability in dheight seems to be more or less the same for each of the fixed
values of mheight in the strip.
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Some Examples Inheritance of Height

Examining the Scatterplot

The scatter of points in the graph appears to be more or less elliptically shaped, with the axis
of the ellipse tilted upward. We will see in the textbook Section 4.3 that summary graphs that
look like this one suggest use of the simple linear regression model.

This model is discussed in detail in Chapter 2 of ALR.
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Some Examples Inheritance of Height

Finding Unusual Cases

Scatterplots are also important for finding separated points, which are either points with
values on the horizontal axis that are well separated from the other points or points with
values on the vertical axis that, given the value on the horizontal axis, are either much
too large or too small.
In terms of this example, this would mean looking for very tall or short mothers or,
alternatively, for daughters who are very tall or short, given the height of their mother.
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Some Examples Inheritance of Height

Finding Unusual Cases

These two types of separated points have different names and roles in a regression
problem. Extreme values on the left and right of the horizontal axis are points that are
likely to be important in fitting regression models and are called leverage points by
Weisberg.
The separated points on the vertical axis, here unusually tall or short daughters give their
mother’s height, are potentially outliers in Weisberg’s terminology. These are cases that
are somehow different from the others in the data.

James H. Steiger (Vanderbilt University) Constructing and Using Scatterplots 23 / 56



Some Examples Temperature, Pressure, and the Boiling Point of Water

Forbes’ Data

In an 1857 article, a Scottish physicist named James D. Forbes discussed a series of
experiments that he had done concerning the relationship between atmospheric pressure
and the boiling point of water.
Forbes knew that altitude could be determined from atmospheric pressure, measured with
a barometer, with lower pressures corresponding to higher altitudes.
In the middle of the nineteenth century, barometers were fragile instruments, and Forbes
wondered if a simpler measurement of the boiling point of water could substitute for a
direct reading of barometric pressure.
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Some Examples Temperature, Pressure, and the Boiling Point of Water

Forbes’ Data

Forbes collected data from n = 17 locations in the Alps and in Scotland.
He measured at each location pressure in inches of mercury with a barometer and boiling
point in degrees Fahrenheit.
Let’s take a look at the scatterplot.
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Some Examples Temperature, Pressure, and the Boiling Point of Water

Examining the Scatterplot

Here is the scatterplot. Of course we have to load the data first. After plotting the data, we
add the best-fitting OLS line to the plot. This is the straight line that best fits the data
according to the Ordinary Least Squares criterion, which we shall discuss in detail later.
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Some Examples Temperature, Pressure, and the Boiling Point of Water

Examining the Scatterplot

Figure 1.3 in the text shows the plot, along side a plot of the model residuals.

> attach(Forbes)

> oldpar <-par(mfrow=c(1,2),mar=c(4,3,1,.5)+.1,mgp=c(2,1,0))

> plot(bp,pres,xlab="Boiling Point Temperature",

+ ylab="Pressure",bty="l")

> m0 <- lm(pres~bp)

> abline(m0)

> abline(m0)

> plot(bp,residuals(m0), xlab="Boiling Point Temperature",

+ ylab="Residuals",bty="l")

> abline(h=0,lty=2)

> par(oldpar)
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Some Examples Temperature, Pressure, and the Boiling Point of Water

Examining the Scatterplot
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Some Examples Temperature, Pressure, and the Boiling Point of Water

Evaluating Residuals

Look closely at the graph on the left, and you will see that there is a small systematic error
with the straight line: apart from the one point that does not fit at all, the points in the
middle of the graph fall below the line, and those at the highest and lowest temperatures fall
above the line. This is much easier to see in the residual plot on the right.

In examining the residual plot, we look for residuals that are small and that are dispersed
around the zero line with approximately equal variability as we move from left to right along
the horizontal axis.

In this case, we can see that the residuals do not have the pattern that we want.
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Some Examples Temperature, Pressure, and the Boiling Point of Water

Transforming the Dependent Variable

The variable on the vertical axis is the dependent variable in the analysis. The variable on the
horizontal axis is the independent variable. Often, transforming the dependent variable
non-linearly can improve the linearity of the scatterplot.

Forbes had a physical theory that suggested that log(pressure) is linearly related to temp.
Forbes (1857) contains what may be the first published summary graph corresponding to his
physical model.
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Some Examples Temperature, Pressure, and the Boiling Point of Water

Plotting the Transformed Variables

> oldpar <- par(mfrow=c(1,2),mar=c(4,3,1,.5)+.1,

+ mgp=c(2,1,0),bty="l")

> plot(bp,logb(pres,10),

+ xlab="Boiling Point Temperature",ylab="log(Pressure)")

> m0 <- lm(logb(pres,10)~bp)

> abline(m0)

> plot(bp,residuals(m0),

+ xlab="Temperature", ylab="Residuals")

> abline(h=0,lty=2)

> par(oldpar)

> detach("Forbes")
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Some Examples Temperature, Pressure, and the Boiling Point of Water

Residuals of the Transformed Model
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Revisiting Basic Regression Results Introduction

Introduction

In Psychology 310, we discussed the basic algebra of regression and correlation, and how it
relates to conditional distributions in the case where the data are well-approximated by a
bivariate normal distribution.

These ideas are presented in a slightly different way by Weisberg in ALR. Let’s review the key
ideas. For more detail, go to the Psychology 310 website and read the relevant handouts.
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Revisiting Basic Regression Results Covariance, Variance, and Correlation

Variance

The variance of a variable is its average squared deviation score, or the expected value of the
squared deviation. We have the formula.

σ2x = Var(x) = E (X − E (X ))2 (1)

Recall that, in the sample, an unbiased estimator is obtained by dividing by n − 1 rather than
dividing by n. So the sample variance S2

x is

S2
x = 1/(n − 1)

n∑
i=1

(Xi − X •)2 (2)
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Revisiting Basic Regression Results Covariance, Variance, and Correlation

Covariance

The covariance of a two variables is the average cross-product of their deviation scores, or the
expected value of the product of their deviations. We have the formula.

σxy = Cov(x , y) = E (X − E (X ))(Y − E (Y )) (3)

The sample covariance Sxy is

Sxy = 1/(n − 1)
n∑

i=1

(Xi − X •)(Yi − Y •) (4)
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Revisiting Basic Regression Results Covariance, Variance, and Correlation

Correlation

The correlation ρxy between two variables is the average cross-product of their standard
scores, or

ρxy = E (ZxZy ) =
σxy
σxσy

(5)

The sample correlation is calculated correspondingly as

rxy = 1/(n − 1)
n∑

i=1

Zxi Zyi =
Sxy

SxSy
(6)
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Revisiting Basic Regression Results The OLS Best-Fitting Straight Line

The OLS Best-Fitting Straight Line

The Ordinary Least Squares line of best fit to a data set is the line that minimizes the sum of
squared residuals in the up-down (Y ) direction. This line has a slope of β1 = ρyxσy/σx and an
intercept of β0 = µy − β1µx , with corresponding (non-Greek) formulas in the sample.

With modern software like R, of course we will never have to compute any of these quantities,
unless it is for fun.

However, our predicted scores are of the form

Ŷ = β1X + β0 (7)
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Revisiting Basic Regression Results Conditional Distributions in the Bivariate Normal Distribution

Conditional Distributions — The Mean

When Y and X have a bivariate normal distribution, the conditional distribution of Y given X
is normal, with a conditional mean that follows the OLS linear regression rule, that is

E (Y |X = x) = β0 + β1x (8)

where β1 and β0 are the slope and intercept of the OLS regression line.
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Revisiting Basic Regression Results Conditional Distributions in the Bivariate Normal Distribution

Conditional Distributions – The Variance

The conditional distribution of Y given X has a variance that is constant, specifically,

Var(Y |X = a) = σ2ε = (1− ρ2xy )σ2y (9)
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Revisiting Basic Regression Results Conditional Distributions in the Bivariate Normal Distribution

Conditional Distribution of Heights

Weisberg discusses the conditional distribution ideas we reviewed above in Section 1.2–1.3 of
ALR. The ”Mean Function” that gives the conditional mean of Y given X is simply the OLS
regression line.
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Revisiting Basic Regression Results Mean Functions

Mean Function

In Figure 1.8, Weisberg presents the conditional mean line estimated by the OLS
regression line, and contrasts it with an “identity” line that represents daughters having,
on average, the same height as their mothers.
By contrasting the two lines, you can see that daughters of tall mothers tend to be taller
than average, but somewhat shorter than their mothers.
Likewise, daughters of short mothers tend to be shorter than the average woman, but
taller than their mothers.
This is the well-known phenomenon of “regression toward the mean” discussed in detail
in Psychology 310.
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Revisiting Basic Regression Results Mean Functions

Regression Toward the Mean

> ## Scatterplot mheight on horizontal,

> ## dheight on vertical

> ## In an L-shaped box

> ## Smaller than normal points

> ## Point character is a bullet

> plot(Heights$mheight,Heights$dheight,bty="l",cex=.3,pch=20)

> ## Next draw line with b0=0

> ## b1=1 dotted red

> abline(0,1,lty=2,col="red")

> ## Next draw regression line

> ## dheight~mheight solid blue

> abline(lm(Heights$dheight~Heights$mheight),lty=1,col="blue")

James H. Steiger (Vanderbilt University) Constructing and Using Scatterplots 42 / 56



Revisiting Basic Regression Results Mean Functions

Regression Toward the Mean
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Revisiting Basic Regression Results Mean Functions

Nonlinear Mean Functions

Depending on the type of data and the nature of the relationship between X and Y , the
conditional mean function need not be linear. We’ll have a lot more to say about that.
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Revisiting Basic Regression Results Variance Functions

Variance Functions

A frequent assumption in fitting linear regression models is that the variance function is the
same for every value of X . This is usually written as

Var(Y |X = x) = σ2 (10)

where σ2 is a generally unknown positive constant.

However, we’ll also deal with a variety of situations where the variance function is
non-constant.
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Anscombe’s Quartet

Anscombe’s Quartet

It is essential to always examine the scatterplot for bivariate data. The same summary
statistics and regression coefficients (means, variances, covariances, correlation, b0, b1) can
yield very different scatterplots.

Anscombe (1973) dramatized this phenomenon with 4 small data sets that have come to be
known as “Anscombe’s Quartet.”

They are plotted on the next slide. What do we see (C.P.)?
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Anscombe’s Quartet

Anscombe’s Quartet

> par(mfrow=c(2,2))

> attach(anscombe)

> plot(x1,y1,xlim=c(4,20),ylim=c(3,13))

> abline(lm(y1~x1),col="red")

> plot(x2,y2,xlim=c(4,20),ylim=c(3,13))

> abline(lm(y2~x2),col="red")

> plot(x3,y3,xlim=c(4,20),ylim=c(3,13))

> abline(lm(y3~x3),col="red")

> plot(x4,y4,xlim=c(4,20),ylim=c(3,13))

> abline(lm(y4~x4,col="red"))
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Anscombe’s Quartet

Anscombe’s Quartet
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Smoothing the Mean Function

The Loess Smoother

We can estimate the mean function with a model, as we have done with linear regression
assuming bivariate normality.

However, we can also “let the data speak for themselves” with various nonparametric
techniques. One approach is smoothing. The loess smoother:

1 Steps across the plot and, for each value x of X , gathers all the points within a certain
span of x .

2 A regression line is fit to these data (not, in general, by simple linear regression!), and then
3 The conditional mean at x is calculated from that regression line.
4 The points resulting from this process are then graphed as a continuous line.
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Smoothing the Mean Function

The Loess Smoother

R automates the calculation and plotting of the loess smoother. Here is some code to
generate a smoothed line for the heights data.

> plot(Heights$dheight~Heights$mheight,cex=.1,pch=20,bty="l")

> abline(lm(Heights$dheight~Heights$mheight),lty=1)

> lines(lowess(Heights$dheight~Heights$mheight,f=6/10,iter=1),lty=2)

> legend("bottomright", c("OLS", "loess"),

+ lty = c(1, 2),col=c("blue","red"))
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Smoothing the Mean Function

The Loess Smoother
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The Scatterplot Matrix

The Scatterplot Matrix

When we have several potential predictors, a scatterplot matrix can help us immediately
spot which predictors have an exploitable relationship with the criterion, and
Also make it relatively easy to spot categorical variables and outliers

Section 1.6 of ALR discusses construction of a scatterplot matrix for data from an analysis of
fuel consumption in the U.S.. Let’s load the data

> attach(fuel2001)

and take a quick look.

> head(fuel2001)
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The Scatterplot Matrix

Variable Definitions
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The Scatterplot Matrix

Additional Calculated Variables

Both Drivers and FuelC are state totals, so these will be larger in states with more people and
smaller in less populous states. Income is computed per person. To make all these comparable
and to attempt to eliminate the effect of size of the state, we:

Compute rates Dlic = Drivers/Pop and Fuel = FuelC/Pop, and rescale Income to be in
thousands.
Also replace Miles by its (base-two) logarithm before doing any further analysis.
(Justification for replacing Miles with log(Miles) is deferred to ALR Problem 7.7.)

> fuel2001$Dlic <- 1000*fuel2001$Drivers/fuel2001$Pop

> fuel2001$Fuel <- 1000*fuel2001$FuelC/fuel2001$Pop

> fuel2001$Income <- fuel2001$Income/1000

> fuel2001$logMiles <- logb(fuel2001$Miles,2)

> names(fuel2001)

[1] "Drivers" "FuelC" "Income" "Miles" "MPC" "Pop"

[7] "Tax" "Dlic" "Fuel" "logMiles"
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The Scatterplot Matrix

The Scatterplot Matrix

> pairs(Tax~Dlic+Income+logMiles+

+ Fuel,data=fuel2001,gap=0.4,

+ cex.labels=1.5)
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The Scatterplot Matrix

The Scatterplot Matrix

The row of the scatterplot matrix determines
the variable that is on the vertical axis, and the
column of the scatterplot matrix determines
the variable that is on the horizontal axis of
any scatterplot.

For example, the upper-right plot is in row 1
and column 5. It shows a plot of Fuel on the
horizontal axis and Tax on the vertical axis.
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